MKANGO RESOURCES LTD. Suite 1400, 700-2nd Street S.W. Calgary, Alberta T2P 4V5

NEWS RELEASE

MKANGO ANNOUNCES MAIDEN INDICATED AND INFERRED MINERAL RESOURCE ESTIMATE FOR THE SONGWE RARE EARTH PROJECT

Calgary, Alberta: October 10th, 2012 – Mkango Resources Ltd. (TSXV-MKA) (the "**Corporation**" or "**Mkango**") is pleased to announce a NI 43-101 compliant mineral resource estimate for the Songwe project in Malawi:

Cut-off grade	In-situ Indicated Mineral	In-situ Inferred Mineral
	Resource estimate	Resource estimate
1.0% TREO	13.2 mt grading 1.62% TREO	18.6 mt grading 1.38% TREO
1.5% TREO	6.2 mt grading 2.05% TREO	5.1 mt grading 1.83% TREO

TREO - total rare earth oxides. In-situ - no geological losses applied. mt - million tonnes

- The in-situ Indicated and Inferred mineral resource estimates at the chosen base case cut-off grade of 1.0% TREO represent a major milestone in the development of the project
- Substantial tonnages at a higher grade are also generated at a higher cut-off grade of 1.5% TREO
- The mineralized zones are untested at depths greater than 350 m below the surface of Songwe Hill and are open laterally to the northeast and southwest, with additional regional exploration potential
- The Indicated component comprises approximately 41.5% of the mineral resource and 45.4% of the estimated contained TREO at a 1.0% TREO cut-off grade, and, following the results of ongoing metallurgical studies, it may form the initial basis for commencement of a pre-feasibility study
- Heavy rare earths as a percentage of total rare earths are 7.1% and 7.4% for Indicated and Inferred mineral resource estimates, respectively, at a 1.0% TREO cut-off grade

William Dawes, Chief Executive of Mkango stated: "The mineral resource estimates significantly exceed our original expectations and provide a strong platform for accelerated development of the project in what is becoming one of Africa's major emerging rare earth mineral provinces. The heavy rare earth component of the mineral resource estimate equates to approximately 40% of the gross in-situ value at current prices with neodymium accounting for a further 30% on the same basis."

Alexander Lemon, President of Mkango stated: "Malawi's favorable political backdrop, its excellent geological potential and improving infrastructure, including major rail, road and power developments, together with the continued support of the Government of Malawi and its Ministry of Energy and Mines, the Mines Department and Geological Survey, provide a very strong basis for development of this important mineral resource and for Mkango's continued growth in the region."

Mineral Resource Estimate

The in-situ mineral resource was independently prepared by The MSA Group of South Africa ("MSA"). MSA, in collaboration and agreement with Dr. Scott Swinden, the "Qualified Person" (QP), has currently identified 1.0% TREO as an appropriate cut-off grade for the mineral resource estimate. This will be further refined on completion of metallurgical test work. The *In-situ* mineral resource estimates at different cut-off grades are illustrated in Table 1 below.

Table 1 - In-situ Mineral Resource estimates at different cut-off grades¹

	0.5% TREO cut	off grade			1.0% TREO cut	off grade		1	.5% TREO cut	off grade	
	Million	TREO	TREO		Million	TREO	TREO		Million	TREO	TREO
	tonnes	%	tonnes		tonnes	%	tonnes		tonnes	%	tonnes
Indicated				Indicated				Indicated			
Carbonatite	16.31	1.35	219,978	Carbonatite	11.10	1.62	179,499	Carbonatite	5.26	2.03	106,886
Fenite	2.71	1.18	31,912	Fenite	1.37	1.61	22,145	Fenite	0.59	2.11	12,460
Mixed	1.01	1.38	13,993	Mixed	0.69	1.65	11,454	Mixed	0.31	2.19	6,719
Total	20.04	1.33	265,882	Total	13.16	1.62	213,098	Total	6.15	2.05	126,065
Inferred				Inferred				Inferred			
Carbonatite	17.09	1.07	182,866	Carbonatite	8.64	1.35	116,967	Carbonatite	1.90	1.85	35,045
Fenite	17.47	1.06	184,819	Fenite	8.27	1.35	111,318	Fenite	1.73	1.88	32,477
Mixed	1.90	1.56	29,614	Mixed	1.68	1.65	27,863	Mixed	1.43	1.74	24,890
Total	36.47	1.09	397,299	Total	18.59	1.38	256,149	Total	5.06	1.83	92,412

1 Mineral resources which are not mineral reserves do not have demonstrated economic viability

The estimated mineral resource has been traced in drill holes to a maximum depth of 350 m below the surface of Songwe Hill and is based on the two phases of diamond drilling completed by Mkango in 2011 and 2012 totalling 6,850 m. The vast majority of the Indicated mineral resource blocks (at a 1% TREO cut-off, 9.1 mt of carbonatite, 0.67 mt of mixed and 1.04 mt of fenite) are at depths of less than 200 m below the surface of the hill. The areas drilled to date are in an elevated position on the northern slopes of Songwe Hill, which rises approximately 230 m above the surrounding plain. The approximate dimensions of the mineral resource estimate are 400 m aligned northeast by 230 m aligned northwest and to a depth of 350 m below and paralleling the topographic surface of the hill and surrounding plain.

Higher grade areas occur at various locations within the mineral resource, including at or close to surface, particularly in the north eastern part of the carbonatite domain. The mineralisation is not constrained by drilling at depth and laterally to both the northeast and southwest.

Geological domains, comprising either carbonatite or fenite dominant rock types, were used to guide the mineral resource estimate. Where the carbonatite and fenite lithologies were inseparable, a mixed domain was created.

The carbonatite dominant domain generally comprises a higher proportion of elevated TREO grade mineralisation than the fenite dominant domain. This results in a higher proportion of the mineralisation in this domain being reported above the 1% TREO cut off, albeit at a similar average grade to the other domains, as illustrated in Table 2.

The carbonatite domain is dominant at Songwe, comprising 84% of the Indicated and 46% of the Inferred mineral resources.

A schematic geological map illustrating the location of the drill holes will be made available on the Company's website (www.mkango.ca).

The individual REO data and ratios in Tables 2, 3, 4 and 5 were derived from length-weighted averages of the drill hole database. Heavy rare earths, as defined here, comprise europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and yttrium. These include the most highly priced of the more commonly traded rare earths, europium, terbium and dysprosium.

The overall weighted average proportion of heavy rare earths as a percentage of total rare earths for Indicated and Inferred resource estimates at 1.0% TREO cut-off grade is 7.1% and 7.4% respectively. The heavy rare earths vary with cut-off grade both in terms of absolute values and relative proportions. As TREO grade decreases, relative proportions of heavy rare earths increases (at 0.5% TREO cut-off grade, the HREO proportion is 7.7% and 8.2% for Indicated and Inferred categories, respectively) and the reverse is also true (at 1.5% TREO cut-off grade, the HREO proportion is 6.1% and 5.8% for Indicated and Inferred categories, respectively).

Apart from the proportion of heavy rare earths, a further measure of the potential value is the proportions of critical rare earths. The US Department of Energy has highlighted neodymium, dysprosium, europium, terbium and yttrium as being "critical" rare earths in terms of their importance to the clean energy economy and risk of supply disruption. Of these, dysprosium, europium, terbium and yttrium are heavy rare earths and are also reflected in the heavy rare earth ratio. Neodymium (Nd) is a light rare earth, principally used in the production of high strength permanent magnets.

The Songwe Hill deposit contains a weighted average of 2,665 ppm Nd_2O_3 and 2,240 ppm Nd_2O_3 in the Indicated and Inferred categories at 1.0% TREO cut-off grade, respectively. This equates to a weighted average proportion of Nd_2O_3 as a percentage of total rare earth oxides for Indicated and Inferred categories of 16.5% and 16.3%, respectively.

Metallurgical Scoping Test Work

Metallurgical scoping work at Mintek in South Africa is ongoing, comprising flotation test work and leach tests. The current flotation test work is focused on a similar reagent regime to that used previously at the Mountain Pass mine and variations thereof. Further reagent regimes and conditions will continue to be tested. Rare earth mineralogy at Songwe is well understood, comprising synchysite and apatite.

Table 2 – In-situ Mineral Resource estimates at 1.0% TREO cut-off grade¹

In-situ Indicated Mineral Resource at 1% TREO Cut-Off

Indicated	Million	La ₂ O ₃	Ce ₂ O ₃	Pr_2O_3	Nd_2O_3	Sm_2O_3	LREO	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy_2O_3	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Carbonatite	11.10	3,951	7,208	775	2,676	387	14,997	95	223	27	127	21	48	6	36	5	590	1,178	16,175	1.62	351	12
Fenite	1.37	3,980	7,235	779	2,679	404	15,077	76	186	24	116	19	46	6	32	4	542	1,050	16,127	1.61	301	11
Mixed	0.69	4,520	7,678	774	2,473	335	15,780	63	148	17	79	13	29	4	22	3	362	739	16,519	1.65	335	12
								In-situ	Inferred	Mineral R	esource a	t 1% TREC	Cut-Off									
Inferred	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
	T																			0/		

120

112

HREO – heavy rare earth oxides

3,275

3,286

5,974

5,973

643

781

Table 3 – REO distribution for different rock types at 1.0% TREO cut-off grade¹

18

11

13,545

13,462

559

523

31

1,115

1,014

1.35

1.35

11

12

11

In-situ Indicated Mineral Resource - REO Distributions at 1.0% TREO Cut-Off

Indicated	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Carbonatite	24.43	44.56	4.79	16.54	2.39	0.59	1.38	0.17	0.78	0.13	0.30	0.04	0.22	0.03	3.65	100	7.3
Fenite	24.68	44.86	4.83	16.61	2.50	0.47	1.15	0.15	0.72	0.12	0.28	0.04	0.20	0.03	3.36	100	6.5
Mixed	27.36	46.48	4.69	14.97	2.03	0.38	0.90	0.10	0.48	0.08	0.18	0.02	0.13	0.02	2.19	100	4.5

25

23

14

-				In-situ	Interred I	vlineral Re	source - Ri	ODistrib	utions at :	1.0% TREC	Cut-Off						
Inferred	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Carbonatite	24.18	44.11	4.74	16.37	2.37	0.67	1.56	0.19	0.89	0.14	0.34	0.04	0.25	0.03	4.12	100	8.2
Fenite	24.41	44.37	4.78	16.43	2.48	0.54	1.33	0.17	0.83	0.14	0.33	0.04	0.23	0.03	3.89	100	7.5
Mixed	27.56	46.83	4.72	15.08	2.04	0.32	0.75	0.09	0.40	0.06	0.15	0.02	0.11	0.02	1.84	100	3.8

 $^{^{1}}$ Mineral resources which are not mineral reserves do not have demonstrated economic viability

2,218

2,212

2,495

321

333

12,430

12,448

90

73

53

211

180

125

Key assumptions, parameters and methods used to estimate the Mineral Resources

- wireframing of the three lithological units was based on surface geological mapping extended to depth using the drillhole intersection data;
- TREO, HREO, Th and U grades as well as Density were determined using Ordinary Kriging interpolation into individual 3-Dimensional block models constrained by the respective lithological wireframes;
- the lithological block models comprised sub-celled block dimensions of 5 m x 5 m x 5 m.
- the lithology wireframes and block models were truncated to the topographic surface;
- no capping or cutting to limit any input grade data was undertaken as part of the mineral resource estimation;
- Datamine Studio 3 was the modelling package; and
- mineral resource classifications were assigned as Indicated and Inferred based on the degree of measurable continuity of geological and grade data.

Scientific and technical information, including data verification, contained in this release has been approved and verified by Dr. Scott Swinden of Swinden Geoscience Consultants Ltd, who is a "Qualified Person" in accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects.

Sample preparation and analytical work for the drilling and channel sampling programmes were provided by Intertek-Genalysis Laboratories (Johannesburg, South Africa and Perth, Australia) employing ICP-MS techniques suitable for rare earth element (REE) analyses and following strict internal QAQC procedures inserting duplicates, blanks and standards. Internal Laboratory QAQC was also completed to include blanks, standards and duplicates.

The NI 43-101 compliant technical report in respect of the mineral resource estimates described herein will be filed on SEDAR within the next 45 days.

The Songwe Hill Rare Earth Project

The Songwe Hill rare earth project is located within a 100% owned exclusive prospecting licence covering an area of 1,283 km² in southeast Malawi (the "Phalombe Licence"). Songwe is accessible by road from Zomba, the former capital, and Blantyre, the principal commercial town of Malawi. Total travel time from Zomba is approximately 2 hours, which will reduce as infrastructure continues to be upgraded in the area.

Mkango Resources Ltd.

Mkango's primary business is the exploration for rare earth elements and associated minerals in the Republic of Malawi. It holds, through its wholly owned subsidiary Lancaster, a 100% interest in two exclusive prospecting licenses covering a combined area of 1,751 km² in southern Malawi. The main exploration target is the Songwe Hill rare earth deposit, which features carbonatite hosted rare earth mineralisation and was subject to previous exploration in the late 1980s.

The Corporation's corporate strategy is to further delineate the rare earth mineralisation at Songwe Hill and secure additional rare earth element and other mineral opportunities in Malawi and elsewhere in Africa.

For further information, please contact:

Mkango Resources Ltd. Office +1 (403) 444 – 5979 Fax +1 (403) 351 – 1703

www.mkango.ca

William Dawes
Chief Executive Officer
will@mkango.ca

Alexander Lemon President alex@mkango.ca

Cautionary Note Regarding Forward-Looking Statements

This news release may contain forward-looking statements relating to the Corporation. Readers are cautioned not to place undue reliance on forward-looking statements, as there can be no assurance that the plans, intentions or expectations upon which they are based will occur. By their nature, forward-looking statements involve numerous assumptions, known and unknown risks and uncertainties, both general and specific, that contribute to the possibility that the predictions, forecasts, projections and other forward-looking statements will not occur, which may cause actual performance and results in future periods to differ materially from any estimates or projections of future performance or results expressed or implied by such forward-looking statements. Such factors and risks include, among others, the interpretation and actual results of current exploration activities; uncertainty of estimates of mineral resources, changes in project parameters as plans continue to be refined; future commodity prices; possible variations in grade or recovery rates; failure of equipment or processes to operate as anticipated; labour disputes and other risks of the mining industry; delays in obtaining governmental approvals or financing or in the completion of exploration.

The forward-looking statements contained in this press release are made as of the date of this press release. Except as required by law, the Corporation disclaims any intention and assume no obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by applicable securities law. Additionally, the Corporation undertakes no obligation to comment on the expectations of, or statements made, by third parties in respect of the matters discussed above.

The TSX Venture Exchange has neither approved nor disapproved the contents of this press release.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Appendix

Table 4 - In-situ Mineral Resource estimates at different cut-off grades

								In-s	situ Indica	ated Carb	onatite M	lineral Re	source									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	16.31	3,274	5,973	642	2,217	321	12,426	85	200	24	114	18	44	6	32	4	530	1,058	13,484	1.35	322	12
1.0	11.10	3,951	7,208	775	2,676	387	14,997	95	223	27	127	21	48	6	36	5	590	1,178	16,175	1.62	351	12
1.5	5.26	5,022	9,163	985	3,401	492	19,063	103	241	29	137	22	52	7	39	5	639	1,275	20,338	2.03	385	12
								In-	situ Infer	red Carbo	natite Mi	neral Res	ource									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	17.09	2,568	4,686	504	1,739	252	9,748	77	180	22	102	17	39	5	29	4	476	949	10,698	1.07	304	12
1.0	8.64	3,275	5,974	642	2,218	321	12,430	90	211	25	120	19	46	6	34	5	559	1,115	13,545	1.35	324	11
1.5	1.90	4,539	8,281	890	3,074	445	17,228	99	233	28	132	21	51	6	37	5	616	1,230	18,458	1.85	349	11
								ı	<i>ln-situ</i> Ind	dicated M	ixed Mine	eral Resou	irce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	LREO	Eu ₂ O ₃	Gd_2O_3	Tb_2O_3	Dy_2O_3	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb_2O_3	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	1.01	3,749	6,369	642	2,051	278	13,088	61	144	17	76	12	29	4	22	3	351	717	13,805	1.38	318	12
1.0	0.69	4,520	7,678	774	2,473	335	15,780	63	148	17	79	13	29	4	22	3	362	739	16,519	1.65	335	12
1.5	0.31	6,051	10,280	1,037	3,311	448	21,127	69	163	19	87	14	32	4	25	3	399	816	21,943	2.19	387	14
									<i>In-situ</i> In	ferred Mi	xed Mine	ral Resou	rce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	LREO	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	1.90	4,289	7,287	735	2,347	318	14,976	53	125	15	66	11	25	3	19	3	305	624	15,600	1.56	251	11
1.0	1.68	4,559	7,746	781	2,495	338	15,918	53	125	14	66	11	25	3	19	3	304	622	16,541	1.65	248	11
1.5	1.43	4,802	8,158	823	2,628	356	16,766	53	124	14	66	11	25	3	19	3	302	618	17,384	1.74	243	11
								ı	<i>n-situ</i> Ind	dicated Fe	nite Mine	eral Resou	rce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	LREO	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy_2O_3	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb_2O_3	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	2.71	2,876	5,228	563	1,936	292	10,895	64	158	20	98	16	39	5	27	4	459	889	11,784	1.18	288	13
1.0	1.37	3,980	7,235	779	2,679	404	15,077	76	186	24	116	19	46	6	32	4	542	1,050	16,127	1.61	301	11
1.5	0.59	5,236	9,517	1,025	3,524	531	19,833	88	217	28	135	22	53	7	38	5	633	1,226	21,060	2.11	334	10
									<i>In-situ</i> In	ferred Fe	nite Mine	ral Resou	rce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	17.47	2,564	4,661	502	1,726	260	9,713	62	153	19	95	16	38	5	26	4	446	863	10,577	1.06	271	13
1.0	8.27	3,286	5,973	643	2,212	333	12,448	73	180	23	112	18	44	5	31	4	523	1,014	13,462	1.35	295	12
1.5	1.73	4,631	8,417	907	3,117	470	17,541	88	215	27	134	22	53	7	37	5	627	1,215	18,756	1.88	331	11

Table 5 - REO distribution at different cut-off grades

		In-	situ Indic	ated Carb	onatite M	ineral Reso	ource - REC	Distribu	ions at 0.	5%, 1.0%	and 1.5%	TREO Cut	-Offs				
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.28	44.29	4.76	16.44	2.38	0.63	1.49	0.18	0.84	0.14	0.32	0.04	0.24	0.03	3.93	100	7.8
1	24.43	44.56	4.79	16.54	2.39	0.59	1.38	0.17	0.78	0.13	0.30	0.04	0.22	0.03	3.65	100	7.3
1.5	24.69	45.05	4.84	16.72	2.42	0.51	1.19	0.14	0.67	0.11	0.26	0.03	0.19	0.03	3.14	100	6.3
		In	ı-situ Infe	rred Carbo	natite Mi	neral Reso	urce - REO	Distributi	ons at 0.5	5%, 1.0% a	ınd1.5% T	REO Cut-	Offs				
Cut-Off	La ₂ O ₃	Ce_2O_3	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	Eu ₂ O ₃	Gd_2O_3	Tb_2O_3	Dy_2O_3	Ho_2O_3	Er ₂ O ₃	Tm_2O_3	Yb_2O_3	Lu ₂ O ₃	Y_2O_3	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.01	43.80	4.71	16.26	2.35	0.72	1.68	0.20	0.95	0.15	0.37	0.05	0.27	0.04	4.45	100	8.9
1	24.18	44.11	4.74	16.37	2.37	0.67	1.56	0.19	0.89	0.14	0.34	0.04	0.25	0.03	4.12	100	8.2
1.5	24.59	44.86	4.82	16.65	2.41	0.54	1.26	0.15	0.72	0.12	0.27	0.04	0.20	0.03	3.34	100	6.7
			In-situ In	dicated M	ixed Mine	ral Resour	ce - REO D	istributior	s at 0.5%	, 1.0% and	d 1.5% TR	EO Cut-Of	ffs				
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	Eu ₂ O ₃	Gd_2O_3	Tb_2O_3	Dy_2O_3	Ho_2O_3	Er ₂ O ₃	Tm_2O_3	Yb_2O_3	Lu ₂ O ₃	Y_2O_3	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	27.15	46.13	4.65	14.86	2.01	0.44	1.04	0.12	0.55	0.09	0.21	0.03	0.16	0.02	2.54	100	5.2
1	27.36	46.48	4.69	14.97	2.03	0.38	0.90	0.10	0.48	0.08	0.18	0.02	0.13	0.02	2.19	100	4.5
1.5	27.58	46.85	4.72	15.09	2.04	0.33	0.74				0.45	0.03	0.44	0.03	4 02	100	2.7
		+0.03				0.32	0.74	0.09	0.40	0.06	0.15	0.02	0.11	0.02	1.82	100	3.7
		40.03				ral Resourc				0.06 1.0% and				0.02	1.82	100	3./
Cut-Off	La ₂ O ₃	Ce ₂ O ₃												Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
Cut-Off %TREO		Ce ₂ O ₃	In-situ In Pr ₂ O ₃ %	ferred Mi	xed Mine	ral Resource Eu ₂ O ₃ %	ce - REO Di Gd ₂ O ₃ %	stribution Tb ₂ O ₃ %	s at 0.5%,	1.0% and	1.5% TR	EO Cut-Of Tm ₂ O ₃	fs Yb ₂ O ₃ %	Lu ₂ O ₃			
	La ₂ O ₃	Ce ₂ O ₃	In-situ In Pr ₂ O ₃	nferred Mi	xed Miner	ral Resourc	Ce - REO Di Gd ₂ O ₃	stribution Tb ₂ O ₃	s at 0.5%, Dy ₂ O ₃	1.0% and	1.5% TRI Er ₂ O ₃	EO Cut-Of	fs Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO 0.5 1	La ₂ O ₃ % 27.50 27.56	Ce ₂ O ₃ % 46.71 46.83	Pr ₂ O ₃ % 4.71 4.72	Nd ₂ O ₃ % 15.05 15.08	Sm ₂ O ₃ % 2.04 2.04	ral Resource Eu ₂ O ₃ % 0.34 0.32	ce - REO Di Gd ₂ O ₃ % 0.80 0.75	stribution Tb ₂ O ₃ % 0.09 0.09	Dy ₂ O ₃ % 0.43 0.40	1.0% and Ho ₂ O ₃ % 0.07 0.06	Er ₂ O ₃ % 0.16 0.15	Tm ₂ O ₃ % 0.02 0.02	Yb ₂ O ₃ % 0.12 0.11	Lu ₂ O ₃ % 0.02 0.02	Y ₂ O ₃ % 1.96 1.84	Total % 100 100	HREO % 4.0 3.8
%TREO 0.5	La ₂ O ₃ % 27.50	Ce ₂ O ₃ % 46.71 46.83 46.93	Pr ₂ O ₃ % 4.71 4.72 4.73	Nd ₂ O ₃ % 15.05 15.08 15.12	Sm ₂ O ₃ % 2.04 2.04 2.05	Eu ₂ O ₃ % 0.34 0.32 0.30	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71	stribution Tb ₂ O ₃ % 0.09 0.09 0.08	Dy ₂ O ₃ % 0.43 0.40 0.38	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06	Er ₂ O ₃ % 0.16 0.15 0.14	Tm ₂ O ₃ % 0.02 0.02 0.02	Yb ₂ O ₃ % 0.12 0.11 0.11	Lu ₂ O ₃ %	Y ₂ O ₃ % 1.96	Total % 100	HREO % 4.0
%TREO 0.5 1	La ₂ O ₃ % 27.50 27.56 27.62	Ce ₂ O ₃ % 46.71 46.83 46.93	Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe	xed Miner Sm ₂ O ₃ % 2.04 2.04 2.05 nite Mine	ral Resource Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution	Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5%	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of	Yb ₂ O ₃ % 0.12 0.11 0.11	Lu ₂ O ₃ % 0.02 0.02 0.02	Y ₂ O ₃ % 1.96 1.84 1.74	Total % 100 100	HREO % 4.0 3.8
%TREO 0.5 1	La ₂ O ₃ % 27.50 27.56	Ce ₂ O ₃ % 46.71 46.83 46.93	Pr ₂ O ₃ % 4.71 4.72 4.73	Nd ₂ O ₃ % 15.05 15.08 15.12	Sm ₂ O ₃ % 2.04 2.04 2.05	Eu ₂ O ₃ % 0.34 0.32 0.30	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71	stribution Tb ₂ O ₃ % 0.09 0.09 0.08	Dy ₂ O ₃ % 0.43 0.40 0.38	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06	Er ₂ O ₃ % 0.16 0.15 0.14	Tm ₂ O ₃ % 0.02 0.02 0.02	Yb ₂ O ₃ % 0.12 0.11 0.11	Lu ₂ O ₃ % 0.02 0.02	Y ₂ O ₃ % 1.96 1.84	Total % 100 100 100 Total	HREO % 4.0 3.8
%TREO 0.5 1 1.5 Cut-Off %TREO	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ %	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ %	Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc Pr ₂ O ₃ %	nferred Mi Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ %	xed Miner Sm ₂ O ₃ % 2.04 2.04 2.05 nite Mine Sm ₂ O ₃ %	Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ %	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ %	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ %	Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5% Dy ₂ O ₃ %	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ %	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ %	fs Yb ₂ O ₃ % 0.12 0.11 0.11 ffs Yb ₂ O ₃ %	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ %	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ %	Total % 100 100 100	HREO % 4.0 3.8 3.6 HREO %
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc Pr ₂ O ₃ % 4.78	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48	ral Resource Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ % 0.54	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ % 0.17	s at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5%, Dy ₂ O ₃ % 0.83	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR Er ₂ O ₃ % 0.33	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ %	fs Yb ₂ O ₃ % 0.12 0.11 0.11 Ffs Yb ₂ O ₃ % 0.23	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89	Total % 100 100 100 Total % 100	HREO % 4.0 3.8 3.6 HREO %
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 44.86	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc Pr ₂ O ₃ % 4.78 4.83	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50	ral Resource Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ % 0.54 0.47	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15	s at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5%, Dy ₂ O ₃ % 0.83 0.72	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR Er ₂ O ₃ % 0.33 0.28	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04	fs Yb ₂ O ₃ % 0.12 0.11 0.11 Ffs Yb ₂ O ₃ % 0.23 0.20	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36	Total % 100 100 100 Total % 100 100	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc Pr ₂ O ₃ % 4.78 4.83 4.87	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52	ral Resourd Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resourd Eu ₂ O ₃ % 0.54 0.47 0.42	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13	s at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5%, Dy ₂ O ₃ % 0.83 0.72 0.64	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR Er ₂ O ₃ % 0.33 0.28 0.25	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.03	fs Yb ₂ O ₃ % 0.12 0.11 0.11 ifs Yb ₂ O ₃ % 0.23 0.20 0.18	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89	Total % 100 100 100 Total % 100	HREO % 4.0 3.8 3.6 HREO %
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68 24.86	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 44.86 45.19	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ In Pr ₂ O ₃ % 4.78 4.83 4.87 In-situ In-situ In-situ In-situ In-	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52 nite Miner	Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resourd Eu ₂ O ₃ % 0.54 0.47 0.42 ral Resourd	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03 ce - REO Di	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13 istribution	s at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5% Dy ₂ O ₃ % 0.83 0.72 0.64 s at 0.5%	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11	Er ₂ O ₃ % 0.16 0.15 0.14 1.5% TR Er ₂ O ₃ % 0.33 0.28 0.25	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.03	fs Yb ₂ O ₃ % 0.12 0.11 0.11 fs Yb ₂ O ₃ % 0.23 0.20 0.18	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03 0.03 0.02	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36 3.01	Total % 100 100 100 Total % 100 100	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 44.86	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ Inc Pr ₂ O ₃ % 4.78 4.83 4.87	Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52	ral Resourd Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resourd Eu ₂ O ₃ % 0.54 0.47 0.42	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03	stribution Tb ₂ O ₃ % 0.09 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13	s at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5%, Dy ₂ O ₃ % 0.83 0.72 0.64	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11	Er ₂ O ₃ % 0.16 0.15 0.14 11.5% TR Er ₂ O ₃ % 0.33 0.28 0.25	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.03	fs Yb ₂ O ₃ % 0.12 0.11 0.11 ifs Yb ₂ O ₃ % 0.23 0.20 0.18	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36	Total % 100 100 100 Total % 100 100	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1 1.5	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68 24.86	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 45.19 Ce ₂ O ₃ %	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ In Pr ₂ O ₃ % 4.78 4.83 4.87 In-situ In Pr ₂ O ₃ %	nferred Mi Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73 nferred Fe Nd ₂ O ₃ %	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52 nite Miner Sm ₂ O ₃ %	Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ % 0.54 0.47 0.42 ral Resource Eu ₂ O ₃ %	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03 ce - REO Di Gd ₂ O ₃ %	stribution Tb ₂ O ₃ % 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13 istribution Tb ₂ O ₃ %	S at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 S at 0.5%, Dy ₂ O ₃ % 0.83 0.72 0.64 as at 0.5% Dy ₂ O ₃ %	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11 , 1.0% and Ho ₂ O ₃ %	Er ₂ O ₃ % 0.16 0.15 0.14 1.5% TR Er ₂ O ₃ % 0.33 0.28 0.25 1.5%TR Er ₂ O ₃ %	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.04 0.03 EO Cut-Of	fs Yb ₂ O ₃ % 0.12 0.11 0.11 fs Yb ₂ O ₃ % 0.23 0.20 0.18 fs Yb ₂ O ₃ %	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03 0.03 0.02 Lu ₂ O ₃ %	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36 3.01	Total % 100 100 100 Total % 100 100	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5 5.8
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1 1.5	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68 24.86 La ₂ O ₃ % 24.25	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 44.86 45.19 Ce ₂ O ₃ % 44.07	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ In Pr ₂ O ₃ % 4.78 4.83 4.87 In-situ In Pr ₂ O ₃ % 4.75	nferred Mi Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73 nferred Fe Nd ₂ O ₃ %	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52 nite Miner Sm ₂ O ₃ % 2.46	Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ % 0.54 0.47 0.42 ral Resource Eu ₂ O ₃ % 0.559	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03 ce - REO Di Gd ₂ O ₃ % 1.45	stribution Tb ₂ O ₃ % 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13 istribution Tb ₂ O ₃ % 0.17	Dy ₂ O ₃ % 0.43 0.40 0.38 s at 0.5% Dy ₂ O ₃ % 0.83 0.72 0.64 s at 0.5% Dy ₂ O ₃ % 0.90	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11 , 1.0% and Ho ₂ O ₃ % 0.15	Er ₂ O ₃ % 0.16 0.15 0.14 d 1.5% TR Er ₂ O ₃ % 0.33 0.28 0.25 d 1.5%TR Er ₂ O ₃ % 0.36	Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.03 EO Cut-Of Tm ₂ O ₃ % 0.04	fs Yb ₂ O ₃ % 0.12 0.11 0.11 fs Yb ₂ O ₃ % 0.23 0.20 0.18 fs Yb ₂ O ₃ % 0.25	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03 0.03 0.02 Lu ₂ O ₃ % 0.03	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36 3.01 Y ₂ O ₃ % 4.21	Total % 100 100 100 Total % 100 100 Total % 100 100	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5 5.8 HREO % 8.2
%TREO 0.5 1 1.5 Cut-Off %TREO 0.5 1 1.5	La ₂ O ₃ % 27.50 27.56 27.62 La ₂ O ₃ % 24.41 24.68 24.86	Ce ₂ O ₃ % 46.71 46.83 46.93 Ce ₂ O ₃ % 44.36 45.19 Ce ₂ O ₃ %	In-situ In Pr ₂ O ₃ % 4.71 4.72 4.73 In-situ In Pr ₂ O ₃ % 4.78 4.83 4.87 In-situ In Pr ₂ O ₃ %	nferred Mi Nd ₂ O ₃ % 15.05 15.08 15.12 dicated Fe Nd ₂ O ₃ % 16.43 16.61 16.73 nferred Fe Nd ₂ O ₃ %	xed Miner Sm ₂ O ₃ % 2.04 2.05 nite Mine Sm ₂ O ₃ % 2.48 2.50 2.52 nite Miner Sm ₂ O ₃ %	Eu ₂ O ₃ % 0.34 0.32 0.30 ral Resource Eu ₂ O ₃ % 0.54 0.47 0.42 ral Resource Eu ₂ O ₃ %	ce - REO Di Gd ₂ O ₃ % 0.80 0.75 0.71 ce - REO Di Gd ₂ O ₃ % 1.34 1.15 1.03 ce - REO Di Gd ₂ O ₃ %	stribution Tb ₂ O ₃ % 0.09 0.08 stribution Tb ₂ O ₃ % 0.17 0.15 0.13 istribution Tb ₂ O ₃ %	S at 0.5%, Dy ₂ O ₃ % 0.43 0.40 0.38 S at 0.5%, Dy ₂ O ₃ % 0.83 0.72 0.64 as at 0.5% Dy ₂ O ₃ %	1.0% and Ho ₂ O ₃ % 0.07 0.06 0.06 , 1.0% and Ho ₂ O ₃ % 0.14 0.12 0.11 , 1.0% and Ho ₂ O ₃ %	Er ₂ O ₃ % 0.16 0.15 0.14 1.5% TR Er ₂ O ₃ % 0.33 0.28 0.25 1.5%TR Er ₂ O ₃ %	EO Cut-Of Tm ₂ O ₃ % 0.02 0.02 0.02 EO Cut-Of Tm ₂ O ₃ % 0.04 0.04 0.03 EO Cut-Of Tm ₂ O ₃ %	fs Yb ₂ O ₃ % 0.12 0.11 0.11 fs Yb ₂ O ₃ % 0.23 0.20 0.18 fs Yb ₂ O ₃ %	Lu ₂ O ₃ % 0.02 0.02 0.02 Lu ₂ O ₃ % 0.03 0.03 0.02 Lu ₂ O ₃ %	Y ₂ O ₃ % 1.96 1.84 1.74 Y ₂ O ₃ % 3.89 3.36 3.01	Total % 100 100 Total % 100 100 Total % 100 100 Total %	HREO % 4.0 3.8 3.6 HREO % 7.5 6.5 5.8